
Diss. ETH No. 16520

Activity Monitoring:

Continuous Recognition

and Performance

Evaluation

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of
Doctor of Sciences

presented by

Jamie A. Ward
BEng CS&E (hons.) Edinburgh

born 24th March 1979
citizen of United Kingdom

accepted on the recommendation of

Prof. Dr. Gerhard Tröster, examiner
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7
Evaluation and

optimization of

performance1

Evaluating the performance of a continuous context recognition system
can be a challenging problem. To-date there is no widely accepted stan-
dard for dealing with this, and methods and measures are usually taken
from related fields such as speech and vision.

In this chapter we attempt to identify and characterise the errors
typical to continuous context recognition. We introduce a means of
quantifying these errors in an unambiguous manner. In an initial inves-
tigation, we score the errors in an example taken from previous work,
and discuss the advantages that the proposed method provides over two
of the most commonly used approaches.

1This chapter is based on work to appear in [61]
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7.1. Introduction

In previous chapters, several different methods of recognising continu-
ous activities were presented and compared. To help evaluate these a
number of standard measures were used, such as precision and recall,
calculated from the timewise, frame-by-frame, comparison of prediction
sequences with their corresponding ground truth; and counts of inser-
tions and deletions based on comparisons where the unit of measure is
an activity event. Each strategy was chosen with the aim of providing
the most relevant and critical information for analysis of the systems
being presented. A combination of different evaluation strategies, such
as used in the later result sections of Chapter 5, can give a fuller ac-
count of the information that might be necessary, both for the designer
optimising a system, and for the developer charged with finding the
most suitable recognition solution for an application.

Unfortunately, as also highlighted in Chapter 5, existing strategies
of performance evaluation fail to capture - or obscure - some of the infor-
mation that might be useful for the designer of an activity (or context)
recognition system. One aspect of a typical continuous context recog-
nition system which existing evaluation strategies fail to address is the
problem associated with imprecise, variable duration event boundaries.
This was initially tackled by the introduction of measures such as over-
fill and underfill, representing cases where recognised events spill over,
or fail to cover, the boundaries marked by ground truth (see 5.5.6).
Though sufficient for the purposes of the described experiments, these
measures do not go far enough in more general categorisation of context
performance. For one, there is no standard method in context for deal-
ing with events that become fragmented into several smaller events; nor
is there a method for dealing with cases where several events become
merged into one.

7.1.1. Chapter contributions and organisation

The chapter is divided into four main parts. In 7.2 we motivate the
work by highlighting the problems of existing measures when used on a
context recognition example taken from previously published work. In
7.3 we provide a detailed analysis of these problems, together with an
overview of evaluation methods in related fields and the issues involved
with their use. Section 7.4 introduces our proposed methods to combat
these problems. These are then, in 7.5.1, applied to the original example
and used to fuel the discussion on how they might be used in practice.
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7.2. Motivation

As a motivation for this work, consider Figure 7.1. Plot (a) is an exam-
ple of output from a multi-class, continuous activity recognition task
which was carried out on a mock assembly scenario in the wood work-
shop of our lab [30]. The plot shows hand-labelled ground truth for five
activities which we attempted to recognise in this experiment: use of a
grinder, file, screwdriver, vice and drawer. The time where no relevant
activity was performed is recorded as NULL. Plotted above the ground
truth are the recognition system’s predictions. This data is output on
a timewise frame by frame basis, with each frame being one second in
length.

Visually, most of the non-NULL activities in (a) seem to correlate
well with their ground truth: there are few insertions and only one
completely deleted activity. The middle (b) and bottom (c) plots of
Figure 7.1 tell a different tale: the abundance of insertions in (b) and
the heavily fragmented output of (c) both contribute to the conclusion
that these results are much poorer than that of (a). This is assuming,
of course, that we are more interested in the correct ordering and con-
tiguous nature of our prediction events than we are about their specific
time durations.

7.2.1. Frame based analysis

When evaluating timewise prediction sequences a standard practice is
to make frame-by-frame comparisons with ground truth. Counts of cor-
rect and incorrect frames can then be tallied for each class and en-
tered into a confusion matrix [50]. From this a number of standard
performance measures can be calculated, the most common of which
is accuracy (overall correct rate) but also increasingly the dual metrics
precision and recall.

However, frame-by-frame analysis has its limitations. These can be
seen by refering again to the examples of Figure 7.1. The frame-by-
frame confusion matrices for these, simplified to the summation of pos-
itive classes vs. NULL, are shown in Table 7.1. Note how the accuracies
calculated for each of the examples tell nothing about their differences
- they are all identical. In addition the confusion matrices for (a) and
(b) are also very similar and tell us nothing about, for example, the
prevalence of insertion errors in (b).

These results are not wrong - the numbers of frame errors in all
three examples are in fact equal. What the visual analysis shows, and
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Figure 7.1: Multi-class continuous activity problem, examples (a− c).
All examples have identical accuracy in frame-by-frame comparison.
Note the prevalence of inserted events in b, and fragmented events in c.
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the frame analysis does not show, is that every positive frame forms
part of an event - a contiguous sequence of same class frames. When
judged from an event perspective then the distribution of frame errors
becomes more important. Many of the false positives in (a), for ex-
ample, are joined to otherwise correctly classified sequences; however,
in (b) they tend to form part of event insertions - an arguably more
serious misclassification.

7.2.2. Event analysis

Researchers in the fields of optical character recognition (OCR) [62, 63]
and automatic speech recognition (ASR) both commonly employ counts
of insertion (Ie), deletion (De) and substitution (Se) event errors to
measure performance. This is a standard approach which is also used
in context recognition.

When these scores are calculated for the examples (see Table 7.2),
the differences between (a) and (b) become much more appartent. This
time (a) clearly has a lower insertion count than (b). However, if we
look at example (c) - again a very different output from (a) - we are
once again disappointed: its deletion, substitution and insertion counts
are identical to those of (a).

There are two main problems underlying these results, neither of
which are highlighted by any of the commonly used evaluation methods.
The first is that many of the events are fragmented: several smaller
segments, although correctly classified, only sparsely cover parts of the
ground truth. Some of these segments are separated by small fragments
of NULL (frame deletions); while others, such as the ‘filing’ event, are
fragmented by insertions of another class (frame substitutions).

The second problem is that events can be merged together: two
or more events of the same class can be recognised as a single large
event. In the examples given here this happens on two occasions, both
involving the ‘drawer’ class (the first two instances of (a), and the
third and fourth instances in (c)). In each case this error affects two
closely occurring events. For purposes of evaluation the fact that these
two separate events have been merged is simply ignored. They are both
treated as correct. In other instances it might be decided (by the system
designer) that merging two separate events constitutes one correct event
and one deleted event.

In both of these cases, fragmenting and merging, it is clear that
there are several ways one might choose to score the results, and here
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lies the problem: there is no standard definition for such errors. The
existing designations of De, Ie and Se were developed for fields such as
OCR which enjoy well-defined, discrete events. In continuous activity
recognition, as highlighted by the examples given here, this is not always
the case.

a) Predictions

Pos. Null

P 46(1) 17
N 27 16

b) Predictions

Pos. Null

P 45(5) 14
N 26 17

c) Predictions

Pos. Null

P 32(12) 20
N 13 30

accs = 57.9% accs = 57.9% accs = 57.9%

Total

64
43

107

Table 7.1: Performance using standard methods: Frame errors using
binary confusion matrices of positive (P) vs. NULL (N) frames, where
rows denote the ground truth and columns the output predictions. Posi-
tive substitutions are entered in brackets alongside True Positives (TP)
in these matrices. Accuracy is calculated as: accf = TP+TN−subst.

Tf
, with

the total frames in each example being Tf = 107.

Ie . De Se erre

a) 3 1 1 45.5%
b) 10 0 2 109.0%
c) 3 1 1 45.5%

Table 7.2: Event errors are given as insertion (Ie), deletion (De) and
substitution (Se) counts. The event error rate is erre = Ie+De+Se

Te
, with

total number of positive events, Te = 11

7.3. Problem specification and existing methods

In order to develop more appropriate evaluation metrics the problems
illustrated in the previous section should first be formulated in a more
systematic way. This section begins with a definition of the performance
evaluation task. From this definition we identify specific characteristics
of performance that are common to continuous activity recognition.

7.3.1. Definition of performance evaluation

In the most general classification problem we have n classes (c1, c2, · · · cn)
without a designated class for NULL. The ground truth consists of a
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number of m distinct events (e1, e2, · · · em), each mapping to one of the
n classes. We assume the system to be time discrete with the small-
est considered time unit being a frame. In most cases, a frame would
correspond to the length of the sensor sampling window.

An ideal classifier would be one where every ground truth event, ei,
has a start time, stop time and label matching an event in the prediction
sequence. Correspondingly, all constituent frames would also match.

Unfortunately such perfect alignment is rare. A typical recognition
system deletes, inserts, and substitutes data. In addition, even for cor-
rectly correlated data, the start and stop frames of the recognised se-
quence might be shifted in time. The problem of evaluating such im-
perfect classification is equivalent to that of finding an appropriate
similarity metric for the comparison of two time series. As we see it,
this problem can be tackled on three levels:

1. Frame by frame. For each pair of corresponding time frames f

(from the ground truth) and f̄ (from the recognition system out-
put) we perform a simple comparison of the class labels.

2. Event-based. Determine how many of the m ground truth events
(e1, e2, · · · em) are accurately reflected in the m̄ events ē1, ē2 · · · ēm̄

produced by the recognition system. The difficulty of event based
evaluation stems from the fact that neither the number of events
nor their start and end points are necessarily identical in the
ground truth and the recogniser output.

3. Hybrid frame and event based. A frame by frame comparison that
takes into account the events to which individual frames are a
part. Thus frame errors that merely cause the start and end points
of events to be shifted are treated differently from frame errors
that contribute to the deletion and insertion of events. This type
of evaluation only makes sense if some prior event analysis has
been carried out.

7.3.2. General considerations

Given two time series there can be no such thing as an optimal mea-
sure of similarity that holds for all applications. As a consequence there
is no optimal, problem independent performance evaluation. Different
application domains are subject to different performance criteria. In
speech recognition, for example, it is more important that the system
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recognises what words have been spoken, and in which order, rather
than how long it took to utter them. Consequently, methods that em-
phasise correct ordering over the specific duration of symbols are used
to evaluate these systems. An input to a real-time system, on the other
hand, would need to be extremely time sensitive. As such an evaluation
metric that emphasises timing errors and delays, i.e. based on a direct
timewise comparison, would be more appropriate.

For every domain, a specific metric must be chosen that charac-
terises and highlights the most critical types of error. This means that
evaluation methods that are successful in one field need not necessarily
be so in another. Applying methods from one domain to another only
makes sense if both domains have the same types of dominant error; in
addition, similar relevance should be assigned to equivalent errors.

7.3.3. Evaluation requirements of continuous activity recogni-
tion

The study of activity recognition encompasses a wide range of problems
including standard modes of locomotion (walking, standing, running,
etc.) [33–35, 64], tracking of specific procedures (e.g. assembly tasks
[65]), and the detection of changes in environmental conditions [36, 64].
While each of these problems have their own characteristic and relevant
error types, there are a number of things that most continuous activity
recognition tasks have in common:

Large variability in event length In many activity recognition tasks
event length can vary by an order of magnitude or more. A wood
workshop assembly example includes such activities as sawing,
which can take minutes, as well as taking or putting away tools,
which can take just a few seconds. Similarly, when recognising
modes of locomotion, there can be instances of long uninterrupted
walks, as well as instances of a user making only a few steps. Di-
rect frame-by-frame evaluation can be misleading in these cases.

Fragmented events Long lasting events are often interrupted by the
occurrence of short events. Thus a long sawing sequence might in-
clude one or two interruptions or an instance of the user changing
the saw. A long walk might include a few short stops. A recog-
nition system designed to spot such situations will also be prone
to false fragmentation. As an example, a slight irregularity in the
sawing motion might be falsely interpreted as an interruption, or



7.3. Problem specification and existing methods 91

a short instance of an entirely different activity. Fragmentation
breaks what should be one long event in the ground truth into
several smaller events in the recogniser output.

Event merging Trying to avoid false fragmentation can lead to a sys-
tem that tends to overlook genuinely fragmented outputs. Thus
two events of the same class, separated by a short event of an-
other class, might be merged into a single long event of the first
class. This in a sense is a ’double deletion’ because it deletes the
short event in the middle, and causes the two events of the outer
class to become one.

Lack of well defined NULL class Many activity recognition tasks
aim to spot a small set of interesting activities or situations while
regarding the rest as instances of a ’garbage’ or NULL class. A
NULL class has the same function as the pauses in speech, or
spaces in character recognition. The problem is that many ac-
tivity recognition tasks have a NULL class that is complex and
difficult to model. In the assembly task, for example, any motion
made between the specific tool activities falls into this class. This
includes everything from scratching one’s head to unpacking a
chocolate bar. As a consequence the NULL class model tends to
be ’greedy’, so that any unusual segment in an event (e.g. strange
motion while sawing) tends to create a NULL event, thus con-
tributing to the fragmentation problem.

Fuzzy event boundaries When collecting large sets of ‘real life’ data
it is often impossible to perfectly time ground truth labels by
hand. The definitions for start and stop times of an event are
often arbitrary and imprecise. This is particularly so in domains
such as activity recognition, where the notion of an ‘event’ is of-
ten difficult to define - at which point does a walking event end
and a running event begin? This leads to timing errors in the
recognition, even if the system can be said to be working per-
fectly. Similarly, in tasks where interesting events are separated
by a greedy NULL, the lack of a well defined NULL model will
inevitably result in some incursion into the boundaries of the cor-
rect events.

The importance of these different issues is dependent on the specific
application for which the system is being evaluated. However, we believe
that for most activity recognition tasks one or more of these issues is
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important and that they should be taken into account when evaluating
these systems.

7.4. Error characterisation and representation

Following from the above observations we now present a character-
isation of the critical error types in continuous activity recognition.
Specifically we propose an approach that (1) includes event mergers
and fragmentation as errors in their own right; and (2) provides infor-
mation about event timing errors. This section presents both a defini-
tion of the proposed errors, and a precise method on how to score them.
We then show how this information can be tabulated for presentation
of a system’s results. Additionally, we show how the methods can be
tailored for dealing with activity recognition systems that treat NULL
as a special case.

Our evaluation method is based on partitioning the signal stream
into what we call segments. As an example, Figure 7.2 shows a three
class recognition problem broken up into 14 segments (denoted by the
vertical dotted lines). A segment is a variable-duration, contiguous se-
quence of frames during which neither prediction nor ground truth label
change. That is, each boundary of a segment is defined by either the
boundary of a ground truth, or of a prediction event.

From the point of view of performance evaluation such a segment
definition has two advantages. The first is that there are no ambiguities
in comparison: each segment can either have the prediction and the
ground truth fully agree, or fully disagree. The second advantage is
that from an analysis of these segments an exhaustive definition of the
event and timing errors, appropriate to context recognition, can be
derived. This strategy has three main steps:

1. Create the segment sequence and note each segment as matching
or non matching. A match being when both the ground truth
segment and its corresponding prediction segment have the same
class label.

2. Use segment match information to score events and event tim-
ing errors. Prediction and ground truth events are scored sepa-
rately. The flowchart of Figure 7.3 shows the algorithm to do this
for ground truth events, with possible outputs of fragmenting F ,
deletion D, underfill U , correct, and no label (a single matching
segment event to which none of the other designations apply).
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Figure 7.2: Some possible error combinations for a single, three class
(A, B, C) example (the special class NULL is not considered here): up-
per diagram shows event errors, middle diagram shows event timing
errors, and lower diagram shows segment error pairs. Dotted vertical
lines show how the sequence is broken up into segments s1..14. Note how
the merge event, covering s4 to s8, is made up of OU, match and MD
segments.

Prediction events are scored using the same algorithm, but with
outputs: merge (M), insertion(I) and overfill (O).

3. Score the segment errors. The Figure 7.4 shows how this is done.
Each non-matching segment is assigned an error pair based on
the ground and prediction events to which it forms part.

In Figure 7.2 we take a single, three-class example and show the
results from each of the event, timing and segment scoring algorithms.
Note that, because we are initially dealing with the general multiple
class problem (we do not give special consideration to NULL), all errors
are substitutions between the three classes ‘A’, ‘B’ and ‘C’. The error
categories (event, timing and segment) and how to score them, are
described in greater detail in the following sections.
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7.4.1. Event analysis

There are four types of event error, each falling into one of two divisions
depending on whether they are part of the ground truth or of the
prediction sequence. A positive error in the prediction sequence can be
defined as either:

Insertion - a prediction event containing no matches, or

Merge - a prediction event containing more than one match.

A negative error, the failure to detect all or part of an event in the
ground truth, is defined as either:

Deletion - a ground truth event containing no matches, or

Fragmentation - a ground truth event containing more than one
match.

Correct is only assigned when a corresponding prediction and ground
truth event is free from all of the above errors. There are some cases
where a single-segment, matched event is not assigned any designation
(for example, see the merged ground events s5 and s8 in Figure 7.2).
On an event analysis these events cannot be said to be correct - but
neither can they be called errors. Instead, we just call them segment
matches.

Positive and negative errors are related: an insertion in the predic-
tion sequence, for example, can result in the deletion or fragmentation
of an event in the ground truth. This relationship is not always one-to-
one however: a fragmentation might be caused by more than one inser-
tion, possible of different classes. It is for this reason that the event level
scoring is carried out on two sequencies; on the ground truth (negative
errors) and prediction (positive errors).

Event timing

Often an event might be judged correct (or merged, or fragmented) but
fail to align completely with its boundaries. The prediction event might
spill over the ground truth boundaries; or it might fall short of them.
For these cases, we introduce two event timing error categories that can
be applied to an event in addition to a correct, merge2, or fragmenting
score:

2Segment s4 of Figure 7.2 shows one such example of this.
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Underfill - ground truth event not completely covered by prediction.

Overfill - prediction event which spills over its ground truth boundary.

Four further sub-categories of timing errors might also be used: de-
lay, noting an underfill at the beginning of an event; shortening an
underfill at the end; preemption, an overfill at the beginning; and pro-
longation, an overfill at the end. In this thesis we focus only on the
two main categories of overfill and underfill and leave treatment of the
sub-categories for future work.

The algorithm for assigning both event errors and event timing er-
rors is shown in Figure 7.3.

Event error and timing error representation

Counts of the four types of event error - insertion, deletion, merge and
fragmentation - can be summed up for each class and presented in a
simple table, one entry for each error type and each class. Similarly,
counts of the timing event errors - overfill and underfill - can also be
summed up and presented, in a separate table, alongside the specific
time lengths (or number of frames) associated with them.

7.4.2. Segment analysis

One aspect of performance that event based scoring does not capture is
the absolute time duration (in terms of frames or seconds) for each type
of error. Additionally, subtle information such as the cause-effect rela-
tionship between prediction and ground truth errors is not captured.
It can be shown that the following pairings are possible:

1. An event is deleted by insertions, merging, or overfilling of another
class

2. An event is underfilled by either an overfill or an insertion of
another class

3. An event is fragmented by insertion(s) of another class.

Rarely do event level comparisons allow a one-to-one relation between
the prediction and ground truth. One deletion, for example, might be
the result of a combination of an overfill plus several different insertions.
Segments do allow such a relation. By definition, every segment forms
part of exactly one prediction event and one ground truth event.
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Figure 7.3: Algorithm for assigning error labels to each ground truth
event, and to each prediction event: for processing ground truth events,
use F ,D and U , for fragmenting, deletion and underfill; for processing
prediction events, use bracketed labels (M), (I) and (O), refering to
merge, insertion and overfill errors respectively; correct or no label can
be assigned to both. #segments refers to the number of segments that
make up an event, #match refers to the number of matching segments
in that event, with a match defined as a segment where ground truth
and prediction agree.
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The specific combination of event and timing errors for each ground
truth and prediction can therefore be used to define the segment error
type, as detailed in Figure 7.4. In total there are six possible error types
for non-matching segments based on the event combinations. Three of
these involve segments forming part (or all) of event errors:

Insertion-Deletion (ID) - forms part (or all) of an inserted predic-
tion and a deleted ground truth

Insertion-Fragmenting (IF) - an inserted prediction that lies some-
where between two matching segments of a fragmented ground
truth

Merge-Deletion (MD) - forms part of a merge prediction, occuring
somewhere between two matching segments of the same predic-
tion event, causing a deletion in the ground truth

The remaining three error designations involve segments that form part
of timing (or both timing and event) errors:

Insertion-Underfill (IU) - forms part (or all) of an inserted predic-
tion and an underfilled ground truth (only assigned if the segment
has not already been classified as IF)

Overfill-Deletion (OD) - forms part (or all) of an overfilled predic-
tion and a deleted ground truth (only assigned if the segment has
not already been classified as MD)

Overfill-Underfill (OU) - forms part (or all) of an overfilled predic-
tion and an underfilled ground truth

The general rule is to take a non-matching segment, and name it
according to the constituent event or timing error designations. Thus a
segment that forms part of an insertion event in the prediction sequence,
and a deletion in the ground truth, is classed as an Insertion-Deletion
(ID); the part of an insertion event which causes an underfilled segment
in the ground truth is called an Insertion-Underfill (IU). Similarly, a
segment that forms part of an overfill timing error in the prediction
and a deletion in the ground truth is classed as Overfill-Deletion (OD);
if the ground truth is merely an underfill, the classification is Overfill-
Underfill (OU).

Two exceptions to this rule occur when a timing error is assigned
in addition to a merge or fragmentation event error. If a non-matching
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Figure 7.4: Algorithm for assigning error pair labels to a segment
based on its constituent event error designations: Match defined as a
segment where ground truth and prediction agree; MD=merge-deletion,
IF=insertion-fragmentation, ID=insertion-deletion, OD=overfill-
deletion, OU=overfill-underfill and IU=insertion-underfill.

segment lies between two matching segments of a merge event it is,
by definition of merge, partly responsible for a deletion and should be
called Merge-Deletion (MD). However, if the predicted merge event is
also an overfill and the segment lies outside of the matching segments
then it should be refered to as either an OD, or OU segment (depending
on the state of the corresponding ground event).

Similarly, if a non-matching segment lies between two matching seg-
ments of a fragmented event it can only be caused by an insertion in the
prediction sequence and should be called Insertion-Fragmenting (IF).
However, if the fragmented ground event is also an underfill, and the
segment lies outside of the matching segments, then it should be refered
to as either an IU, or OU segment.

These pairings are codified and presented in Table 7.3, which we
name the Segment Error Table (SET). Prediction errors (insertion,
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overfill and merge) form the rows, while ground truth errors (deletion,
underfill and fragmentation) make up the columns of this table.

Deletion Underfill Fragmentation
Insertion ID IU IF
Overfill OD OU
Merge MD

Table 7.3: Possible segment error designations: rows represent pre-
diction segment errors, columns ground truth errors; ID=insertion-
deletion, OD=overfill-deletion, MD=merge-deletion, IU=insertion-
underfill, OU=overfill-underfill and IF=insertion-fragmentation

Analysis of segments provides an unambiguous assessment of errors.
In the simplest analysis, segment counts of the six different error types,
ID, IU , IF , OD, OU , and MD are made and filled into the table.
Additional information about the absolute time length, or frame counts,
of these segments can also be included. This combined segment and
frame count SET provides a representation of errors that combines the
temporal resolution of frame-by-frame evaluation with the descriptive
power of event level evaluation.

NULL as a special case

We can expand the table thus described to handle NULL as separate
from the other classes - a separation required for most activity recog-
nition tasks. This is achieved by the addition of rows and columns
denoting the six error combinations with respect to NULL, as shown
to the left of Table 7.4. The SET to the top left corner of the expanded
table now only contains information regarding substitution errors be-
tween non-NULL positive classes. The top right section of the table
then gives a breakdown of false positive errors, while the bottom sec-
tion gives information about false negative errors.

In many continuous recognition scenarios we are not interested in
whether a ground segment labelled NULL has been completely deleted,
fragmented or underfilled; likewise we are not interested in whether
a positive class deletion was caused by an insertion or an overfilling
of NULL. In such situations the error designations can be combined
to produce a reduced table, as shown to the right of Table 7.4. For
convenience we drop the ’N ’ suffix and the dual error designation from
the errors involving NULL, referring to them directly as I, O, M , D,
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D U F DN UN FN

I ID IU IF IDN IUN IFN

O OD OU ODN OUN

M MD MDN

IN IN D IN U IN F

ON ON D ON U

MN MN D

D U F N
I ID IU IF I

O OD OU O

M MD M

N D U F

Table 7.4: Segment Error Table with NULL(N) as special case: full
table (left) and reduced version (right)

U and F . The remaining substitution errors retain the dual OU , IU ,
etc., designators.

Multi-class SET

While the basic SET provides much more information about system
performance than event level analysis alone, it still lacks the exact re-
lation between errors of different classes as traditionally represented
by confusion matrices. Where more detail is required regarding specific
(or all) classes in a multi-class system, SET can easily be extended in a
similar manner to that already shown for NULL in Table 7.4. By adding
three additional columns (D,U and F ) and three additional rows (I,O
and M) for each class, SET can be extended for any number of classes.

7.5. Discussion

7.5.1. Application of method to worked example

We now apply the described error characterisations to our examples
from Section 7.2 and give examples of how the event, timing and SET
representations might look.

Event and timing results

Treating NULL as a special case, we present counts of the non-NULL
class insertions, deletions, merge and fragmentation errors, for the ex-
amples of Figure 7.1, in Table 7.5. Comparing these counts with the
insertion and deletion counts of the earlier event analysis in Table 7.2,
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we can draw much the same conclusions. Notably, the new method al-
lows us to clearly see the additional merge and fragmentation errors in
example (c) . The poor timing performance of (a), with many overfilled
events in comparison to the other examples, is also now evident.

The information regarding class substitution errors, however, has
been lost in this representation - they are dissolved into pairs, such
as insertion/deletion. The lack of a one-to-one relationship between
prediction and ground truth errors makes the idea of a ‘substitution
event’ difficult to define at the event level. Instead, we defer to the
segment analysis to provide this information.

a)

#events

I’ 4
D’ 2
M 1
F 0

#timing(#frames)

Overfill 8 (18)

Underfill 4 (6)
b)

#events

I’ 12
D’ 2
M 0
F 1

#timing(#frames)

Overfill 1 (1)

Underfill 3 (11)
c)

#events

I’ 4
D’ 2
M 1
F 3

#timing(#frames)

Overfill 4 (6)

Underfill 4 (12)

Table 7.5: Event errors (for Positive, non-NULL classes only),
I’=Insertion, D’=Deletion, M=Merge and F=Fragmentation; and
event timing errors, Overfill and Underfill. Number of timing event
errors are given together with the corresponding frame counts

Segment (and frame-by-frame) results

The segment and frame errors for the examples are presented in Table
7.6. Now clearly visible is the higher proportion of segments which form
timing errors in (a) (Underfilling by NULL, U and Overfill onto NULL,
O), than in the other examples. Correspondingly, a higher proportion
forming event errors is found in (b) and (c). These examples contain
fragmenting errors whereas (a) does not. Of merger errors there are
only two instances - in (a) and (c) - each of which involves only a single
merge of two ’drawer’ events.

These measures correspond to what a visual inspection of the output
might confirm, and provide much more information than a basic frame-
by-frame comparison.

Visualisation of SET

The pie-charts of Figure 7.5 give one possible manner in which the SET
information might be presented. Another approach, perhaps better for
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system comparisons, is to stack the errors in a barchart. For readability
these need not necessarily show all of the different error types in the
same graph - for example, the substitution errors might be treated
together as a single error type, with perhaps a separate graph for all
the others.

a)

#segments (#frames)

D U F N

I 1(1) 5(7)

O 8(18)

M 1(2)

N 1(11) 4(6) b)

#segments (#frames)

D U F N

I 2(3) 1(2) 9(25)

O 1(1)

M

N 1(2) 3(11) 1(1) c)

#segments (#frames)

D U F N

I 1(1) 3(11) 2(3)

O 4(6)

M 1(4)

N 1(1) 4(12) 1(7)

Table 7.6: SETs for positive classes (P) vs. NULL for the examples
in Figure 7.1, with counts of segment errors and corresponding number
of frames

7.5.2. Significance and Limitations

As shown by the examples above, our scheme has three advantages over
standard methods of performance evaluation in activity recognition:

1. It introduces the notion of segments as the largest continuous time
slices in which no ambiguities occur in scoring the correctness of
the predictions

2. Based on this notion it leads to an unambiguous, objective char-
acterization of event level error

3. It makes explicit different sources of error (timing, fragmentation,
merging) which are ignored in conventional evaluation methods,
even though they are widespread in activity recognition systems.

The main limitation of the method concerns events with a large
time shift between ground truth and the prediction. A prediction that
is shifted by so much that it has no overlap with the corresponding
ground truth will be scored as an insertion, and the corresponding
ground truth event as a deletion.

What require further investigation are the benefits of this additional
error information. These are dependent on the application for which
the recognition system is to be used. For a safety critical system, such



7.5. Discussion 103

ID [ 1] 0.9%
D [ 1] 10.3%

I [ 5] 6.5%

U [ 4]
5.6%

O [ 8]
16.8%

CorrNull
15.0%

CorrPos
43.0%

SEL [ 7] –>
17.8%

IF [ 1] 1.9%
ID [ 2] 2.8%

F [ 1] 0.9%
D [ 1] 1.9%

I [ 9] 23.4%

U [ 3]
10.3%

O [ 1]
0.9%

CorrNull
15.9%

CorrPos
42.1%

P
r
o
p
o
r
t
io

n
o
f
N

U
L
L

s
a
m

p
le

s
:
4
0

%
(
=

4
3
/
1
0
7
)

SEL [14]
30.8% –>

IF [ 3] 10.3%
ID [ 1] 0.9%

F [ 1] 6.5%

D [ 1] 0.9%
I [ 2] 2.8%

U [ 4]
11.2%

O [ 4]
5.6%

CorrNull
28.0%

CorrPos
29.9%

SEL [ 8]–>
21.5%

Figure 7.5: Pie chart visualisation of SET information for the three
examples (left (a) to right (b)). Errors given as a percentage of the total
time (frames), with the number of segments given [in square brackets].
Exploded segments represent serious errors, the total of which is marked
SEL
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as an accident avoidance monitor in an industrial setting, timing may
be regarded as critical, thus making the minimization of overfill and
underfill of recognized activities desirable. On the other hand, for a
system interested only in which activities are carried out such errors
would be less critical. Imagine, for example, a system monitoring the
sequence of events as a mechanic repairs part of an aircraft engine.
What is important here is that the number of insertions and deletions
is kept low - that the system does not miss out any activities, and
that it gets the sequence correct. If further information on the count of
specific activities is required (how many bolts have been removed from
the engine) then errors such as fragmenting and merge errors must also
be kept to a minimum.

For a conclusive proof of the value of the information provided by
our method an elaborate empirical study is needed. Such a study would
need to consider a wide range of applications and preferably look at
previously published activity recognition experiments and re-score their
results using the above method.

For a meaningful study access to data from different groups would
be required and the associated effort would beyond the scope of this
work. This is clearly a limitation and means that no authoritative state-
ment can be made about the value of the additional error information.
Nonetheless such benefits are very plausible. Considering the undis-
puted benefit of an objective scoring method we believe that this work
consist a valuable contribution to the community.

7.5.3. Work in related fields

Some of the problem domains closest to continuous activity recogni-
tion are line detection in 2D Graphics [56] and video analysis [66, 67].
Consider the case of a 2D line: the ground truth indicates a single line,
but the recognition system might return a sequence of shorter lines.
Further, these might overlap with the ground line, or be slightly off-
set from it. Different approaches have been suggested to tackle this
problem of fragmentation. One suggestion is to redefine the error mea-
sures to incorporate fragmented events as some lower weighted correct
event[56].

Some decision function based on a measure of closeness might also
be used; perhaps utilising fuzzy error margins (as suggested at [68]).
However this approach, as with weighting, requires the introduction of
further parameters which only serve to further complicate the evalua-
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tion process. In addition, all of these approaches aim to “cover up” the
problem rather than finding a way of presenting it as a result in itself.

In extreme cases, particularly in the vision domain, the problem
of finding a suitable measure is sidestepped altogether in favour of
showing typical example images (as commented by Hooveret al. [37]
and by Müller [38]). This is an approach which has - out of necessity
for lack of a standard measure - been used by researchers publishing in
the activity domain. The trouble is that, although valid for establishing
the feasibility of a method with a small number of samples, it does not
scale up well to comparative studies with large databases.

Time series matching methods

More generally, the performance evaluation problem can be viewed as
the matching of two time series - the prediction output with a trusted
ground truth. Time-series similarity methods are used in an extremely
wide variety of domains - astronomy, finance, chemistry, robotics, etc.,
to mention only a few. Even more vast is the number of performance
measures that are introduced for every specific application (Keogh
& Kassetty[43] give an extensive overview). Some of the more com-
mon similarity measures are generally based on dynamic time warping
(DTW)[69], or methods using longest common subsequences (LCS)[70].
Another useful method, as introduced by Perng et al.[71] utilises ‘land-
marks’ in the data, applying several different transformations (shifting,
time warping, etc.) to approximate a more human perception of simi-
larity. Though useful in measuring similarity, these methods do not pro-
vide a clear means of measuring phenomena such as event fragmenting
and merging.

Rather than selecting some measure of “similarity”, or parametrized
boundary decision to fit existing error designations, we aim to charac-
terise and present the errors as they are - in a quantifiable way which
corresponds closely to that of the human observer.

7.6. Conclusion

In this chapter we present a non-ambiguous scoring of event errors in
a continuous activity recognition system. Observing the lack of a one-
to-one relationship between events in the ground truth and those in
the prediction sequence, we target errors in these two sequences sepa-
rately: specifically, we define positive errors as insertion (I) and merge



106 Evaluation and optimization of performance

(M) events by the prediction sequence; and negative errors as deleted
(D) and fragmented (D) events in the ground truth. Complementary to
these, we introduce timing event categories which score whether a pre-
diction event overfills its ground truth, or a ground event is underfilled
by its prediction.

We introduce a timewise method of comparison based on the idea of
segments - a segment being a contiguous section of time where neither
ground truth nor prediction changes. This allows the representation
of an unambiguous one-to-one relation between ground and prediction
segments, which we have shown to produce a maximum of six possi-
ble error combinations, each assigned depending on the nature of the
events to which each segment forms part: ID, IU, IF, OD, OU, and
MD. These error pairings can be represented in the so-called Segment
Error Table (SET), with scoring on the number of segments, and their
corresponding time durations (or number of frames).

The aim of this chapter is primarily to highlight some of the prob-
lems in performance evaluation of context recognition systems, and to
suggest a way in which these might be dealt with. The proposed meth-
ods of event and segment analysis, and the use of the SET, are intended
as starting points from which further discussion in the community can
commence. The examples given here are also intended as a preliminary
study, and further evaluation of these methods on a wider range of con-
text problems is desirable. Though it is the author’s belief that these
methods will find general use, it is likely that some revision will be
necessary on encountering specific problems not envisaged here.



8
SET optimization for

continuous activity

recognition

This penultimate chapter aims to synthesize the main ideas pre-
sented in the thesis. In particular it provides a re-assessment of the
earlier activity recognition methods using the ideas introduced in Chap-
ter 7. Specifically, the Segment Error Table (SET) based strategy for
performance evaluation is applied to the earlier results with the aim of
provoking a discussion on its utility as a tool for system optimization.
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Figure 8.1: Sound segmented results from Chapter 5, this time ac-
counting for Merge and Fragmenting errors contributing towards the
Serious Error Level (SEL)

8.1. SET analysis of the wood workshop

The time based results of the work described in Chapter 5 and 6 were
presented using barchart summaries of the confusion matrices. In these
chapters, the idea of overfill and underfill was also introduced, which
in the results presented incorporated frames which could be classified
as merge and fragmenting errors. From the point of view of the experi-
ment dealt with in this thesis, such errors are regarded as having little
importance and the consequent combination of merge time with over-
fill, and fragmenting time with underfill, could be viewed as acceptable.
However with the considerations of Chapter 7 in mind, the definition
of serious error level (SEL) given in the earlier chapters should now be
revised to incorporate merge and fragmenting. In doing so, a slight re-
duction in the levels of overfill and underfill, with a corresponding rise
in serious error can be expected. The revised barcharts, using the full
breakdown of overfill, underfill, merge, fragmenting, insertion, deletion
and substitution timing errors, are given in Figure 8.1 and 8.2 for the
user-dependent results of Chapter 5 and 6 respectably.

8.1.1. (Re-)analysis of results

Though the SEL rises as expected, it rises fairly consistently with all
the methods, and the same broad conclusions can be drawn as given
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Figure 8.2: Wrist only, sliding window results from Chapter 6, ac-
counting for Merge and Fragmenting errors contributing towards the
Serious Error Level (SEL)

earlier, that is:

1. Sound based segmentation produces a reasonable recognition per-
formance on its own, and when optimised for high true positives,
still maintains less than 2% substitution errors (in user-dependent
training).

2. Applying different fusion methods to combine sound and accel-
eration improves this performance considerably. Comparison of
outputs (COMP) provides a ‘cautious’ recognition, preferring low
instances of falsely recognised activities, and almost no substitu-
tion errors. Borda count and highest rank (HR) are better at de-
tecting all positive activities, at the expense of insertions. While
logistic regression (LR) provides a compromise in performance
between the other ranking methods and COMP.

3. Using only wrist-worn sensors, and a simple sliding window seg-
mentation which utilises both sound and acceleration, similar per-
formance is observed to the sound segmented method, and con-
sequently the above conclusions also hold.

When merge and fragmenting errors are taken into account, the
following observations can also be made:

1. The user-dependent COMP. method of Figure 8.1 produces an
equally low count of merge as it does insertion (both 1.6%). Its
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COMP.

Class T I M D F C

NULL 740 41 118 84 21 635

hammer 20 0 0 0 0 20
saw 20 1 0 0 3 17
file 20 2 0 1 8 11
drill 20 2 0 0 3 17
sand 20 0 0 2 4 14
grind 20 2 0 6 3 11

screwd. 20 7 0 4 6 10
vise 173 38 16 35 5 133

drawer 440 11 20 110 0 330

Pos. 753 63 36 158 32 563

LR

Class T I M D F C

NULL 740 44 25 242 44 454

hammer 20 2 0 0 0 20
saw 20 6 0 0 4 16
file 20 7 0 0 7 13
drill 20 8 0 0 2 18
sand 20 0 0 1 3 16
grind 20 9 0 2 4 14

screwd. 20 13 0 3 6 11
vise 180 137 18 15 12 153

drawer 440 51 85 30 0 410

Pos. 760 233 103 51 38 671

Table 8.1: Event error tables for (left) COMP. and (right) LR methods
(using sound segmentation, with Tia = 0.3, and user-dependent train-
ing). Total number of events (T), insertions (I), merges (M), deletions
(D), fragmentations (F), and correct (C) are given for each class. Also
given are the results when NULL is treated as a class, and the total
positive class results (Pos.)

count of fragmenting is also low (1.7%), with the bulk of its er-
rors being attributed to deletions (7.4%). This helps confirms the
‘cautious’ nature of this method.

2. LR also produces a low count of fragmentations, but with a much
larger degree of merging (1.3% versus 5.5% in Figure 8.1.)

This analysis can be furthered by looking at the absolute counts of
class event errors for COMP. and LR, again using the user-dependent,
sound-segmented cases, as given in Table 8.1.1. The COMP. method,
for example, deletes many instances of drawer, yet very few of the other
classes. These classes do however experience much fragmentation. This
is in contrast to what might be assumed from the timing report of
Figure 8.1. This is largely because the null insertions which cause these
fragmentations, though numerous, have very short duration. A system
where the occasional, short duration fragmentation can be tolerated,
and where most of the classes to be recognised are of a reasonably
long duration (i.e. longer than the typical 1-2 seconds of drawer usage),
might therefore be suitable for the use of COMP.

In keeping with the report of Figure 8.1, the event response of the
LR method in Table 8.1.1 produces a comparably similar number of
fragmenting errors to COMP. Also in keeping with this summary, it
has fewer deletions too - though the major reason for this is its much
better response to the drawer class. For a system with many such short
duration events, with a tolerance for a greater number of insertions,
the LR method as used in this work would provide the better solution.
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A further interesting observation is the results given for the drawer
and vise classes of both methods in Table 8.1.1. These classes are unique
in that they are both fairly short in duration and that they always occur
in pairs: the opening of a drawer is always followed by a short pause
before being closed again; and similarly the opening of a vise to place
a piece of wood is usually accompanied by the vise being tightened
again to hold it. Consequently, these are the only two classes which
experience merge errors. In a similar way, as their duration is so short,
these classes rarely exhibit fragmenting errors.

This is a facet of the dataset, and raises the (somewhat obvious)
importance of selecting not only appropriate measures, but an appro-
priate dataset for whichever application is being developed. Any in-
vestigation into merge errors therefore would require focus on short
duration, frequently occurring classes such as these. Conversely, inves-
tigation of fragmenting errors requires classes of fairly long duration
(such as represented here by the other activity classes).

8.2. Parameter optimisation with SET

In Chapter 5 the response of the sound based segmentation was op-
timised using a plot of the precision and recall across values across
a sweep of the IA threshold Tia. In the analysis presented, the main
criteria was for a high recall - on the premise that later fusion would
improve precision. However, the use of precision and recall meant that
overfill and underfill were not considered. Equally, the effect of Tia on
levels of the error categories was not investigated.

As an example of how a SET analysis might be used to investigate
the effects of system parameters, Figure 8.3 presents the error barcharts
for nine different settings of Tia for two of the sound recognition setups
used earlier in the thesis. The first graph (a) presents results for a
partitioning and recognition method using only IA+LDA classification
on frames. In (b), the frame classifications are smoothed over using a
majority vote sliding window in a manner identical to that employed
in 5.5.3.

Immediately it can be seen how the first method (a) has a con-
sistently high level of fragmentation across all thresholds, in compar-
ison to the low levels of (b). Even though (a) has very few deletions,
it still retains less insertion time than the smoothed version of (b).
These observations, not immediately evident in a precision-recall anal-
ysis, provide useful information that might allow a designer to further
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Figure 8.3: Sound analysis across a sweep of Tia, for (a) using LDA
classification, and (b) using LDA plus majority vote smoothing. Note
the prevalence of fragmenting errors in (a) over (b)

fine-tune system parameters for different application needs. For exam-
ple, knowing that many of the false negatives in (a) actually form part
of fragmentations rather than deletions, might allow choice of such a
setup for an application where a fragmented output is more acceptable
than one where events are deleted.

8.3. Conclusion

Segment Error Table (SET) analysis provides a mechanism by which
researchers of activity recognition can more completely assess the per-
formance of their systems. This allows easier optimisation, or fine tun-



8.3. Conclusion 113

ing, of system parameters for specific applications. The information
provided by SET goes over and above that provided by more tradi-
tional methods, such as confusion matrices and standard ASR-based
event counts.

Though the basic conclusions drawn in the earlier chapters of the
thesis still hold, the use of SET provides a more thorough analysis of
those results. It allows researchers to take issues such as fragmenta-
tion and merging of output event into consideration in a much clearer,
more direct manner, and provides a means by which these can be sum-
marised.
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T.Starner. Recognizing workshop activity using body worn mi-
crophones and accelerometers. In Pervasive, LNCS, 2004.

[31] H.Junker, P.Lukowicz, and G.Tröster. Continuous recognition of
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